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Abstract. We solve the cooperative sequential adsorption problem on a linear chain consisting
of periodically repeating sequences of sites with different adsorption rates, patches, for example
ABCCABCCAB . . . . The problem is reduced to a system ofs first-order differential equations,
where s is the patch size. A simple iterative method to solve the equations numerically is
presented. A few examples are calculated in detail.

1. Introduction

The growing interest, over the past two decades, in irreversible processes has resulted in the
emergence of new branches of statistical mechanics. Particulary active among them is the
study of cooperative sequential adsorption (CSA) phenomena. There one considers a flux of
particles falling at random on a lattice of sites or a continuum of points (the substrate) and
each particle has a given probability of sticking irreversibly to vacant sites. Cooperativity
arises when the sticking probability depends on the occupation state of neighbouring sites.
For example, a well-known CSA process is the adsorption of monomers with nearest-
neighbour (NN) exclusion (i.e. a particle can be adsorbed on a vacant site only if its
NN sites are empty). CSA models have been applied to a variety of problems, ranging
from chemical reactions on polymer chains and surface growth phenomena to biological,
ecological and sociological systems. A very complete review of the field up until 1993 is
given in the classical paper by Evans [1]. For more recent works, see [2–5].

Most work on CSA is concerned with homogeneous lattices or continua, so that the
solutions exhibit the full symmetry of the lattice. Even the random chains studied in [3], on
average, have this symmetry. However, the study of CSA on heterogeneous substrates, i.e.
those represented by a lattice of sites with different adsorption rates, is of great importance
in many real processes, such as gases chemisorption and physisorption on metal surfaces
[6, 7], on non-uniform polymers [8] and, in general, on any kind of real solid surfaces [9, 10].
In this work we address the problem of CSA, more precisely adsorption of monomers
with NN exclusion, on a wide class of heterogeneous one-dimensional chains with truly
inequivalent sites, characterized by finite, periodically repeating, sequences of sites with
different adsorption rates (patches). The solution of this problem will include, as particular
cases, all previously known solutions for homogeneous and heterogeneous one-dimensional
chains. In section 2 we define the heterogeneous model and set up its basic equations,
which will permit a unified treatment of homogeneous and random chains, and of patches
of any size. In section 3, we apply the results to the known homogeneous and random
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cases. We also analyse the case of random sites with a Markovian correlation. Finally, in
section 4, we turn to our specific goal: periodically repeating patches. We specialize the
equations to this situation and present a simple method for their exact numerical solutions.
Our conclusions are given in section 5.

2. Definition of the model

The system we wish to study is built from the following elements and rules.
(i) An infinite linear chain of sitessn, n integer.
(ii) A random ‘rain’ of particles falling on the sites. The probability that a particle

wets siten in any time interval dt is αndt , independently of all other sites and the previous
history of siten. We callαn the interaction strength of siten with the rain.

(iii) Sites may be empty or occupied. Att = 0 all sites are empty. Occupation is
irreversible. Siten becomes occupied if it is wet while both NNs are empty.

An empty site is indicated by ano and an occupied site is indicated by anx. We
furthermore introduce a distinction amongo sites: a site that was never wet by a particle
will be called ad (dry), providing a nice intermediate step to decouple uncorrelated aspects
of the problem (the particle rain) from those correlated (occupations).

In what follows we shall use the general notationP(ABC . . .) for the joint probability
of the simultaneous occurrence of eventsA,B,C, . . . , and P(ABC . . . /KL . . .) for the
conditional probability of the occurrence of eventsA,B,C . . . given that eventsK,L, . . .
have occurred.

From rule (ii) it follows that wetting of a site obeys a Poisson distribution. The
probability that siten is ad at time t is: P(dn) = exp(−αnt). Let R be an event involving
only sites to the right ofn andL to the left ofn. We may write for the joint probability of
LdnR

P (LdnR) = P(dn)P (LR/dn) = exp(−αnt)P (LR/dn). (1)

According to rules (i)–(iii) the dynamics of the semi-infinite chainn + 1, n + 2, . . . is
determined by the rain on these sites, and the state of siten as a neighbour ofn+ 1. Thus,
given dn the conditional probability ofR (L) can be computed from the rain on the right
(left) half. Since there are no statistical correlations for the rain

P(LR/dn) = P(L/dn)P (R/dn). (2)

From these two equations it follows that

P(R/Ldn) ≡ P(LdnR)

P (Ldn)
= P(dn)P (R/dn)P (L/dn)

P (dn)P (L/dn)
= P(R/dn). (3)

Thus, adn shields the left from the right semi-infinite subchain. Borrowing Evans
nomenclature, we may say that the chain has thed-Markov property.

Let us now consider the joint probabilityP(dn−1on). For its time evolution, notice that
a dn−1on configuration that survived until timet can be destroyed in the next dt in two
ways: either siten− 1 gets wet, or, requiring in additionon+1, siten becomes occupied

dP(dn−1on)

dt
= −P(dn−1on)[αn−1+ αnP (on+1/dn−1on)]

= −αn−1P(dn−1on)− αnP (dn−1onon+1). (4)

However,dn−1onon+1 occurs if and only ifdn−1dnon+1 occurs: siten is surrounded by two
empties and can only be empty if it was never wet. Using this and thed-Markov property

P(dn−1onon+1) = P(dn−1)P (dn/dn−1)P (on+1/dn−1dn) = exp(−αn−1t)P (dnon+1) (5)
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so (4) takes the form

dP(dn−1on)

dt
= −αn−1P(dn−1on)− αn exp(−αn−1t)P (dnon+1) (6)

providing a recursion relation forP(dn−1on) from one site to the next. An even simpler
relation is obtained for the conditional probabilities

Q−n ≡ P(on/dn−1) = P(ondn−1)

P (dn−1)
= exp(αn−1t)P (ondn−1). (7)

Substituting (7) in (6) we obtain for theQ’s the recursion relation

dQ−n
dt
= −αn exp(−αnt)Q−n+1. (8)

EachQ− depends only on theα’s of the right subchain starting atn, site n included.
A similar treatment can be given with left and right interchanged to obtainQ+.

Now, we have to show how the coverageθn=P(xn) of each site can be calculated. We
haveP(xn)+ P(on) = 1, so dP(xn)/dt = −dP(on)/dt . We obtain

dP(on)

dt
= −αnP (on−1onon+1) (9)

whereon−1onon+1 occurs ifon−1dnon+1 occurs, and using thed-Markov property

dθn
dt
= αnP (dn)P (on+1/dn)P (on−1/dn) = αn exp(−αnt)Q−n+1Q

+
n−1 (10)

which allows us to compute the average occupation of each site once theQ’s are known.
Equations (8) and (10) provide the solution to a large class of CSA problems.

3. Particular cases

3.1. Homogeneous chain

Let us now see how the equations apply to the homogeneous chain. This is the problem that
started the whole field, solved as far back as 1939 by Flory [11] using a clever combinatorial
method. It assumes the sameα for all sites. By symmetry theQ’s must be independent of
n and of left–right direction, so equation (8) takes the form

dQ

dt
= −α exp(−αt)Q = d[exp(−αt)]

dt
Q (11)

which, with the initial conditionQ(0) = 1 is immediately integrated to give

Q = exp[exp(−αt)− 1]. (12)

Substitution into (10) gives

dθ

dt
= α exp(−αt)Q2 = α exp(−αt) exp{2[exp(−αt)− 1]} . (13)

The change of variableu = exp(−αt) allows us to perform the remaining integration
explicitly

θ(t) = 1
2[1− exp{2[exp(−αt)− 1]}]. (14)

The jamming coverage isθj = θ(∞) = 1
2(1− e−2) = 0.432 332.
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3.2. Random chain, independent sites

As the next step towards more heterogeneous systems, we assume theαn to be independent
random variables. By averaging equation (8) over theα’s of all sites

d〈Q−n 〉
dt
= 〈−αn exp(−αnt)〉〈Q−n+1〉 (15)

where the factorization of averages on the right-hand side follows from the fact thatQ−n+1
depends on sitesn+1, n+2, . . . while the other term depends on siten. Also, on average the
right and left directions are equivalent, so we can drop the−+ superscripts, and furthermore
all sites are equivalent which allows us to drop the subscriptsn, n + 1. The averageQ
satisfies

d〈Q〉
dt
= 〈−α exp(−αt)〉〈Q〉 (16)

which has an analytical solution. DefiningF(t) ≡ 〈exp(−αt)〉, so that〈−α exp(−αt)〉 =
−dF/dt , the solution is〈Q〉 = exp[F(t)− F(0)]. For the coverage a similar treatment of
equation (10) gives

d〈θ〉
dt
= −dF

dt
exp{2[F(t)− F(0)]} (17)

from whichθ(t) = 1
2{1−exp{2[F(t)−F(0)]}}. The coverage has the same functional form

as for a homogeneous chain, simply with the substitution of every exp(−αt) by its average.
We get the sameθj as for the homogeneous chain, in fact this result was obtained by Fonk
and Hillhorst [15], but of course the dynamics will be different, strong sites filling first.
We can perform a more detailed analysis computing separately the coverage of sites with
different α’s. Suppose for instance a binary chain, whereαn can be eitherαA or αB (with
probabilitiespA andpB). Instead of averaging over siten in (10), we can write explicit
equations for the casesαn = αA andαn = αB

d〈θA〉
dt
= αA exp(−αAt)〈Q〉2 d〈θB〉

dt
= αB exp(−αBt)〈Q〉2 (18)

and obtain the time evolution of the coverage ofA and B sites separately. It is easily
verified that the averageθ of equation (18) is simply〈θ〉 = pAθA + pBθB .

In figure 1 we present results for a binary mixture of ‘strong’A sites (αA = 1) and
‘weak’ B sites (αB = a) for concentrationspA = 1, 2

3,
1
2 and 1

3. The plot is the ‘sticking
coefficient’ graph. The inset of figure 1, presenting the same data with a log scale on the
vertical axis, conveys more information. ThepA = 0.5 curve suddenly changes its slope at
θ ∼= 0.32, suggesting a change in regime at this coverage. In fact, there is first a fast filling
of A sites, followed by a much slower filling ofB sites. Integration of theθA equation (18)
confirms thatθA starts growing rapidly and saturates at about 0.64 fort around 5. Since
half of the sites areA’s, this corresponds to aθ of 0.32. Then, on a much slower timescale,
B sites start filling up as described by the second portion of the curve.

3.3. Random chain, Markov correlation between sites

We now assume thatα’s at different sites are statistically correlated and were deposited
randomly according to a Markov process. Suppose a binary chain withA andB sites. We
describe it by two parameters:cA, the concentration ofA sites (orcB = 1−cA ), and a
correlation factorρ. Given two consecutive sites, the probabilities of occupation are

pAA = cA(cA + ρcB) pAB = pBA = cAcB(1− ρ) pBB = cB(cB + ρcA). (19)
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Figure 1. The sticking coefficient is defined asS(θ) = dθ/dt . Figure 1 shows the normalized
sticking coefficientS(θ)/S(0) as a function of coverage for four different concentrations of
strong sites and a strength ratioa = 0.01. Notice that all curves give the same final jamming
coverage. The inset shows a subset of the data but now with a log scale for the sticking
coefficient. The kink in thepA = 0.5 curve forθ ∼= 0.32 indicates a switch from one regime
(fast filling of strong sites) to another (slow filling of weak sites).

The conditional probabilities for a site when a neighbour is known are accordingly

pA/A = cA + ρcB pA/B = cA(1− ρ)
pB/A = cB(1− ρ) pB/B = cB + ρcA.

(20)

If ρ = 0 these equations describe independent sites. Forρ > 0 the probability ofAA and
BB pairs is enhanced while that ofAB andBA is diminished. Thus,ρ > 0 describes a
tendency to formA andB islands.ρ < 0, in contrast, favours the mixture ofA’s andB ’s.
We see thatρ measures the tendency towards segregation of the two types of sites.

For configurations involving more than two sites we make the usual Markov assumption
that they are completely determined by NN correlations. Let us apply our equations to this
situation. Taking a conditional average of (8) when siten is anA

d〈Q−n 〉n=A
dt

= −αA exp(−αAt)〈Q−n+1〉n=A (21)

where the average on the right-hand side can be expressed in terms of pair probabilities

〈Q−n+1〉n=A = pA/A〈Q−n+1〉n+1=A + pB/A〈Q−n+1〉n+1=B. (22)

Using the short-hand notationQA = 〈Q−n 〉n=A, and the average equivalence of all sites

dQA

dt
= −αA exp(−αAt)[pA/AQA + pB/AQB ]

dQB

dt
= −αB exp(−αBt)[pA/BQA + pB/BQB ].

(23)

This set of equations must be solved numerically. But in CSA problems end effects decay
very quickly, faster than exponential [11], and this suggests the use of an iterative method.
• Start withQA = QB = 1. This is equivalent to starting on the right end of a finite

chain, say siteN on a chain ofN sites.
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• Use the aboveQ on the right-hand side and integrate (23) to obtain new functions
QA,QB . This iterative step is equivalent to moving one site inwards on a finite chain, from
N to N − 1.
• Repeat step (ii): re-insertQA,QB on the right-hand side of (23) and compute new

Q’s for sitesN − 2, N − 3, . . .. Stop when convergence to the desired accuracy has been
reached.

The iterations involve just one type of funcions:c exp(−bt). Any linear combinations
of exponentials on the right-hand side of (23) gives again exponentials as output. The
iterative procedure must only keep track of an array of coefficientsc and their respective
exponentsb.

Once theQ’s are found, we can take a conditional average of (10) when siten is anA
(and a similar equation forB), to obtain

dθA
dt
= αA exp(−αAt)[pA/AQA + pB/AQB ]2. (24)

As an example, we have solved the problem for a 50–50% mixture of strongA and
weakB (a = 0.1) sites, first with a tendency ofA andB to mix (ρ = −0.9) and then with
a tendency to form islands (ρ = 0.9). The conditional probability of finding a neighbour of
the same species is by (21) 0.05 in the first case and 0.95 in the second case.

We found that 20 iterations for the solution of (23) gave convergence up to the eighth
decimal place in theQ’s for all t values. Figures 2(a) and (b) show as ‘total’ the coverage
〈θ〉 = pAθA + pBθB for the mixing and segregating correlations respectively.

4. Periodically repeating patches

Now we reach our final aim, CSA on a chain formed by periodic repetition of a patch
pattern. Let us mention that for patch size 2, that is, anABABAB . . . chain, there is an
exact solution due to Oliveira and Tome [5]. By a truetour de forcethey map the problem
into a modified Bessel equation whose order is related to theα’s. It is hard to see how their
procedure could be generalized to larger patch sizes.

For ease of notation we will explain our approach for a specific five-site patternAABCB

repeated again and again. It will, however, be clear that the procedure is completely general,
applying to any patch size and pattern. With five inequivalent sites there will be five different
Q− functions, which we labelQ−1 throughQ−5 . They satisfy (8), which here gives

dQ−1
dt
= −αA exp(−αAt)Q−2

dQ−2
dt
= −αA exp(−αAt)Q−3

dQ−3
dt
= −αB exp(−αBt)Q−4

dQ−4
dt
= −αC exp(−αCt)Q−5

dQ−5
dt
= −αB exp(−αBt)Q−1 .

(25)

This can be solved numerically by the same iterative procedure as in section 3.3: start
with Q−1 = 1 and use it on the right-hand side of the last equation to computeQ−5 , insert
this in the right-hand side of the previous equation and computeQ−4 , etc. After using all
five equations we have again a (now improved)Q−1 with which the procedure is repeated.
Continue until convergence to the desired accuracy is reached.

A similar set of equations must in principle be solved for theQ+n . However, if the chain
has centres of left–right symmetry (in our case siteC, or between the twoA’s) no new
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Figure 2. The coverageθ(t) versus the dimensionless timet of a random chain with a 50–50%
mixture of strongA and weakB sites. The strength ratio isa = 0.1 and we have Markov
correlation between sites. In (a) it is shown the mixing (ρ = −0.9) case and in (b) the
segregating (ρ = 0.9) one.

calculations are necessary. From symmetry considerationsQ+1 = Q−2 , etc. Having found
theQ’s, equation (10) gives the occupation of the various types of sites

dθ1

dt
= αA exp(−αAt)Q−2Q+5 (26)

for the left member of anAA pair, and similarly for the other types of sites. The total
coverage is obviously the average of these expressions over a patch. Having explained the
method, let us now turn our attention towards specific examples.

Zgrablich and Ciacera [12] have explored, by Monte Carlo simulations, the behaviour
of what they callpsn patches in one dimension. These consist ofn ‘strong’ sites followed
by n ‘weak’ sites (a= parameter to be varied) followed by anothern strong sites, etc.
Figures 3(a) and (b) compare the results of these previous simulations with our new theory.

As a last and somewhat fancier example, we consideredABCDCB patches with a
triangular profile for the interaction strengths:αA = 1, αB = 0.75, αC = 0.5, αD = 0.25.
Figure 4 shows the time evolutions ofθn for each type of site. Results are generally what
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Figure 3. Comparison between results of previous Monte Carlo simulations and our theory
about the sticking coefficientS(θ) for chains with periodically repeating patches. (a) The case
of a strength ratioa = 0.1. At a lower strength ratio,a = 0.01 in (b) we can see a clear regime
change.

one would expect. At smallt , sites start filling at rates proportional to their interaction
strengths.A sites are the first to fill, which decreases the probability of theirB neighbours.
This in turn gives theC’s a good chance to fill.

5. Conclusions

In conclusion, we have shown that theQ’s of equation (8) are the natural variables
for the study of inhomogeneous chains, and we have given their physical interpretation
as conditional probabilities. Equations (8) and (10) provided a unified treatment of
homogeneous, random and inhomogeneous chains. A simple and fast iterative numerical
method was proposed, and successfully applied to a variety of cases. In particular, we have
seen that for a random chain with Markov correlation between sites, the highest possible
coverage compatible with NN exclusion is 50% when every second site is occupied. This
limit can be approached with a low enough strength ratioa = αB/αA and sufficiently long
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Figure 4. The coverageθ(t) versus the dimensionless timet for the different type of sites of a
chain with triangular profile patches. The interaction strenghts are:αA = 1, αB = 0.75, αC =
0.5 andαD = 0.25.

AB . . . subchains, in which theA’s will end up completely filled and theB ’s completely
empty. Figure 2(a) reflects this tendency: coverage is higher than in the uncorrelated case.
With segregation correlations (figure 2(b)), in contrast, the total coverage is more evenly
split amongA and B sites. The first saturate faster but theB ’s catch up on a longer
timescale. There is no enhancement in total coverage as compared with the uncorrelated
case. From the study of periodically repeating patches we expect that for very largen, psn
should behave like two independent homogeneous chains of strong and weak sites filling
at different rates with an evolution not too different from that ofps2. Figure 3 shows the
sticking coefficient for differentpsn, in agreement with this expectation.

The extension of the analysis to heterogeneous lattices of dimensions higher than 1 is
very difficult. Even in the case of homogeneous lattices only approximate solutions can
be obtained via appropriate truncation rules for the hierarchical rate equations due to the
variety of empty configurations to be considered [1]. For heterogeneous lattices, only the
cases of random and Markov distributions of inactive sites has been given an approximate
analytic treatment [13]. Monte Carlo simulation seems to be the most appropriate technique
for the description of the kinetics and correlations for general heterogeneous substrates
[14]. Our study of the one-dimensional heterogeneous chains may be illuminating in
the interpretation of simulation results in higher dimensions, as we intend to discuss in
a forthcoming publication.
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